Ex. Laplace with weak anchoring

Let $\Omega = [0,1] \times [0,1]$ and $u:\Omega \to \mathbb{R}$ be such that $u \in H^1(\Omega)$, and let an energy be given by

(1)
$$E[u] := \int_{\Omega} |\nabla u|^2 + \int_{\Gamma} |u - u_0|^2 - \int_{\Omega} fu - \int_{\Gamma} gu,$$

where $\Gamma = \partial \Omega$ and $f, g, u_0 \in H^1(\Omega)$ are fixed. We can take the variational derivative of this and set it equal to zero, thus obtaining the weak formulation:

(2)
$$\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Gamma} (u - u_0) v = \int_{\Omega} f v + \int_{\Gamma} g v, \quad \forall v \in H^1(\Omega).$$

To obtain the strong formulation, we first need to integrate by parts using the Divergence Theorem. When we do this, the equation becomes

(3)
$$\int_{\Omega} (-\nabla^2 u)v + \int_{\Gamma} (\nabla u \cdot \nu)v + \int_{\Gamma} (u - u_0)v = \int_{\Omega} fv + \int_{\Gamma} gv, \quad \forall v \in H^1(\Omega),$$

where ν is the outward-pointing unit vector normal to Γ . Now, set $(u - u_0) + \nabla u \cdot \nu = g$ on Γ , and we can substitute again to obtain

(4)
$$\int_{\Omega} (-\nabla^2 u)v = \int_{\Omega} fv, \qquad \forall v \in H^1(\Omega),$$

Using the usual line of argumentation, this can be equivalently written as

(5)
$$-\nabla^2 u = f, \quad \text{in } \Omega,$$

$$u + \nabla u \cdot \nu = g + u_0, \quad \text{on } \Gamma.$$

Now, let us simulate this in Firedrake. Let $u_0 := (1,1)^T \nu$, and let $u_m(x,y) := \sin(x) + \cos(y)$ be the manufactured solution. Then

(6)
$$f = -\nabla^2 u_m = -(-\sin(x) - \cos(y)) = \sin(x) + \cos(y) = u_m,$$

and

(7)
$$g = u_m + \nabla u_m \cdot \nu - u_0 = u_m + (\cos(x), -\sin(y))^T \nu - (1, 1)^T \nu.$$